

François Perruchas, Nicolò Barbieri, Davide Consoli

Green and Digital Transformations. Skills, Jobs and Policy Ferrara, 6-7 November, 2025

Climate Change, Green Technologies, and Innovation Dynamics

Global awareness and commitments:

- The 2015 Paris Agreement set the goal of limiting global warming to +2°C above pre-industrial levels.
- The costs of inaction are high: pollution, biodiversity loss, and threats to human health and food security.

Role of green technologies:

- Central to strategies against climate change.
- More complex and novel than conventional technologies → require targeted incentives for development (Barbieri et al, 2022).
- Development capacity varies across countries depending on economic and knowledge structures.

Territorial factors in innovation:

- Innovation arises from the **recombination of existing ideas** (Romer, 1994).
- Dependent on the diversity of local knowledge and access to social and material resources.
- Regions with heterogeneous knowledge bases → more complex and dynamic technologies.

Skills, Green Innovation, and the Technological Life Cycle

Technological life cycle:

- Emerging phase: high variety and uncertainty of solutions.
- Mature phase: standardization and diffusion of knowledge.
- Green technologies—especially emerging ones—are strongly linked to diverse knowledge bases (Barbieri et al., 2020).

Research gap:

• The link between workers' skills, green technology development, and the life cycle of innovation remains underexplored, particularly in Europe.

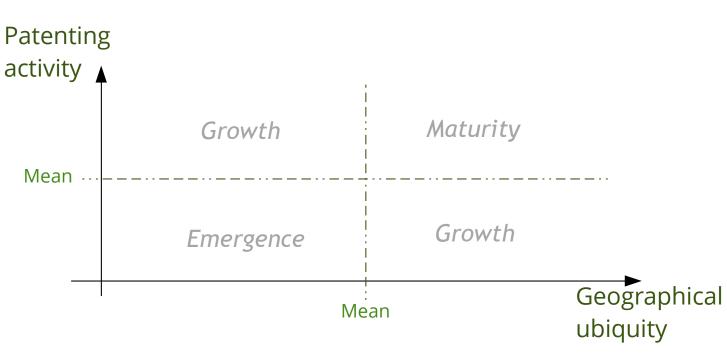
Research objectives:

- 1. Identify worker competencies associated with green innovation.
- 2. Analyze how these competencies evolve across the life cycle of green technologies.

Methodology

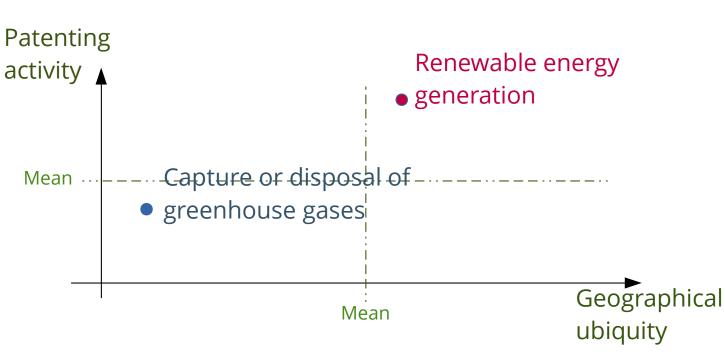
Green technologies

- We use PATSTAT 2025 to follow the development of technologies
- We focus on Climate Change Adaptation and Mitigation Technologies (branch Y02)
- Inventors located in Europe at regional level

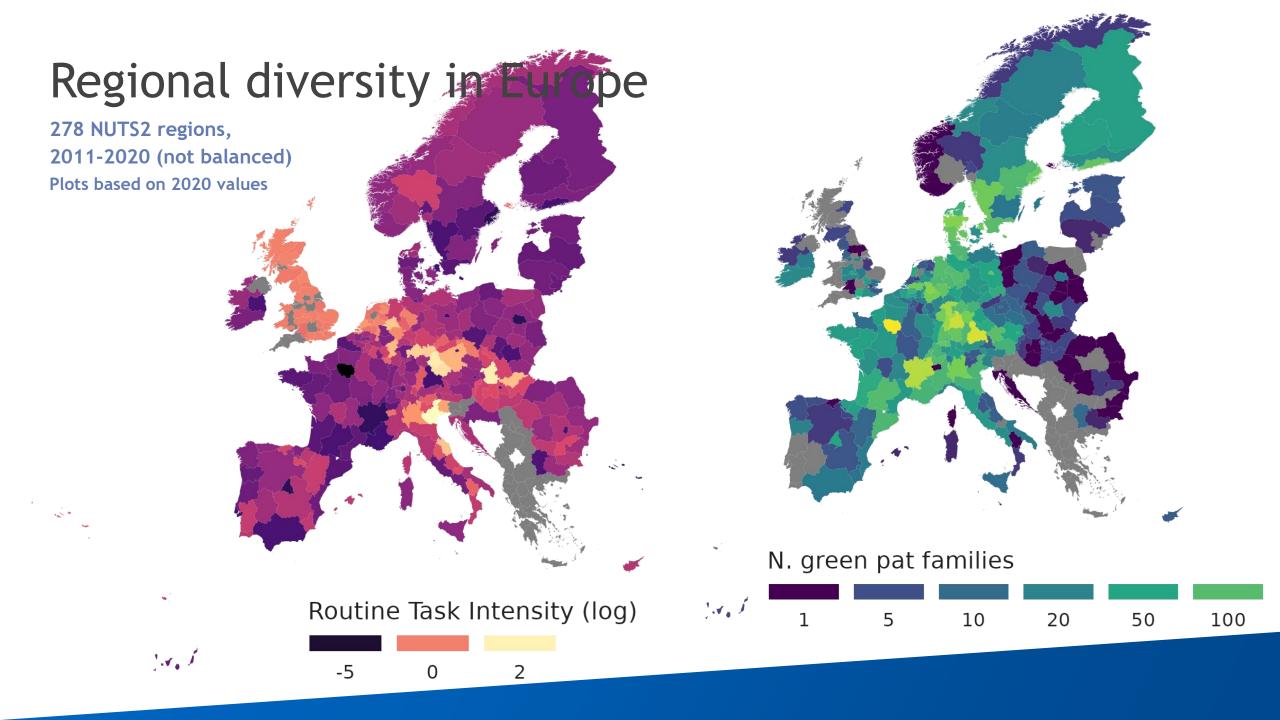

Regional labour market in Europe

- Source: Labour Force Survey at regional level
- ISCO at 1 digit level to identify occupations all occupations except Armed forces (ISCO 6) and farming professionals (ISCO 0)
- Routine Task Intensity (RTI) index following Salomons (2015) → we compute an average RTI for each region / year.

Additional data


• OECD Regional database for population, GDP, employment / unemployment rate

Measuring the life cycle of technologies



- 2 dimensions
 - Pat. activity: Number of patent families
 - Geo. Ubiquity: Number of RTA per technology
- TLC stages computed for all green technologies worldwide
 - Using inventors' addresses
 - 5 years time period

Measuring the life cycle of technologies - example

- "Capture or disposal of greenhouse gases" is in emergence phase
- "Renewable energy generation" is in maturity phase

Preliminary results and discussion

- Different types of knowledge, and of knowledge connections, are relevant along the technology life cycle.
- In the early phase, the RTI is negative and significant: non-routine occupational structures favour exploration, and distant bits of know-how are more conducive to emerging GT inventive activity.
- In the **growth phase**, the **RTI turns positive**, although the effect is still limited: technologies are stabilising, and proximate knowledge starts supporting incremental improvement.
- In the mature phase, the RTI is positive and significant: routinisation becomes functional to exploitation and cumulative innovation.

Closing remarks

- Routinisation is not uniformly beneficial: its role depends on the stage of the technology life cycle.
- In early phases, GT growth is associated with a high concentration of knowledge-intensive activities.
- As technologies become mature, their development benefits from standardisation and cumulative knowledge.
- Policy implication: supporting diversity early and routinisation later is crucial to leverage green technologies' development path.
- Different types of knowledge, and of knowledge connections, are relevant to technology development along the life cycle:
 - Early stages: distant bits of know-how (experimentation);
 - Later stages: proximate know-how (stabilization);

Limitations and future avenues

Data

- Fill missing data / replace OECD source
- Improve NUTS continuity (in particular in France in 2016)
- Alternative source of data for skills?
- Improve geolocation of inventors

Exploration

- Differences between green tech / non-green tech
- Explore connections between certain technologies / occupations / time periods
- Use alternative patent family definition, green technology classification delve into environmental management technologies

